User Manual CX plus

Tel.: $\quad+49 /(0) 8861 / 2332-0$
Fax.: $\quad+49 /(0) 8861 / 2332-22$
E-Mail: blr@beluk.de
Web: http://www.beluk.de

\triangle DANGER \triangle General safety notes

Failure to observe the following instructions may result in serious injury or death!

There is a risk of electric shock during installation! Therefore, electrical devices may only be installed, operated, serviced and maintained by qualified professionals. A professional is someone who has the ability, experience and knowledge required for the construction, installation and operation of electrical equipment and who has been instructed in identification and avoidance of possible hazards.

During installation and maintenance, the relevant regulations for the installation of switchgear and accident prevention must be observed and adhered to.

Devices with damaged or open housings or terminals must not be operated on the power grid and must be disconnected immediately.

After disconnecting the device, 10 minutes must be waited until the capacitors have been discharged. Subsequently, doors or covers may be removed. It must be checked whether the disconnected area is voltage-free using a standardized measuring instrument.

Ther BELUK GmbH assumes no responsibility or warranty for damage to persons and equipment caused by improper installation and use.

Connection diagram: CX plus -12R

NOTE: The CX plus is designed to control capacitive or inductive stages. Operating both stage types simultaneously is not possible.

Connection diagram: CX plus -12T

NOTE: The CX plus is designed to control capacitive or inductive stages. Operating both stage types simultaneously is not possible.

Installation and commissioning

1) Before installation, the connection specifications of the $C X$ plus must be compared with the data of the power grid.
2) Disconnect the power supply and secured the working area against unauthorized and unintentional reconnection. Check if the disconnected area is voltage-free using a standardized measuring instrument. The voltage-free system must be earthed and short-circuited. Neighboring live parts must be covered and/or bypassed.
3) The current transformer must be short-circuited. A current transformer which has not been short-circuited generates a life-threatening voltage. This can lead to a destruction of the current transformer.
4) Insert the CX plus into the panel cut-out and fix it by using both fixing clamps.
5) Connect the grounding cable to the intended terminal on the backside of the device.
6) All cables must be connected as it is depicted in the connection diagram. The terminal K of the current transformer must be connected to terminal S1 and the terminal L to terminal S2.
7) Remove the short-circuit bridge at the current transformer.
8) The voltage can now be switched on.
9) If the device is connected correctly, the display will light up for one second and all symbols will be displayed during a display test.
10) Now the First Setup can be started by confirming YES. The different settings must be adjusted according to the power grid.
11) After a successful First Setup, the display shows AUTO. The control starts after the set discharge time has been expired.

Frequently asked questions during commissioning

1) AUTO is not shown \rightarrow control is switched off Possible reasons: Manual operation activated; control is switched off; temperature is too high; current is less than 5 mA ; voltage or THD of the voltage are inadmissible
2) U ALARM is shown \rightarrow voltage is out of tolerance Possible reasons: Nominal voltage (SETUP/Un) or voltage transformer factor is set incorrectly (SETUP/Pt)
3) I Lo ALARM is shown \rightarrow measuring current is smaller than 5 mA Possible reasons: Connection from the current transformer to the controller is incorrect; the current transformer jumper was not removed; current transformer ratio is too large; no current flow
4) EXPORT is shown \rightarrow reverse current flow Possible reasons: If there is no real reverse current flow, the voltage or current measurement is incorrect (phase, polarity)
5) Wrong $\cos \varphi$ is shown \rightarrow incorrect connection Possible reasons: Voltage or current measurement is incorrect (phase, polarity)
6) Outputs are immediately switched off Possible reasons: Stage sizes in the stage database are incorrect
7) Frequent switching operations

Possible reasons: Capacitor capacity have not been recognized yet

Display

Operation concept

1

- Exit menu
- Move cursor to the left
- Reset alarm (push for 3 s)

2 - Decrease value

- Select next value, menu or stage number

3 - Increase value

- Select previous value, menu item or stage number
- Open menu
- Move cursor to the right
- Accept value

Entering values

If a menu item has been entered, the first digit of the current value flashes. Numbers can be increased or decreased by pushing the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys.

The next digit can be selected by pushing the key. In order to select the previous digit, the \langle key must be pushed.

If the last digit (right) has been selected and the key is pushed again, a multiplier \mathbf{k} (kilo) or \mathbf{M} (mega) can be set using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys. To accept the value and complete the entry, the key must be pushed again.

If an entered value has not been accepted, or if another value is displayed after an input, the entered value has exceeded or fallen below the threshold of the setting range.

An entry can be canceled at any time by pushing the \langle key. Depending on the actual position, the $\boldsymbol{\text { key must be repeatedly pushed until the first digit (left) }}$ is selected. Pushing the $\boldsymbol{<}$ key again exits the menu item without accepting changes.

Main menu

A menu can be selected by pushing $\boldsymbol{\Delta} \boldsymbol{\nabla}$; Submenus are entered with

Measurement menu (Using © $\boldsymbol{\nabla}$)
Retrieve measured values

INFO - Stage database

Contains the reactive power, power losses, amount of switching cycles and operating hours, stage type of each stage
MANUAL - Switching stages manually
Switching stage outputs manually

SETUP - Controller setup

Show and adjust all controller settings

ALARM - Alarm memory

Show the last 10 alarm messages. The newest alarm message is saved in location 1.

INFO - Stage database

Stages can be selected by $\boldsymbol{\Delta} \boldsymbol{\nabla}$ and entered by pushing \downarrow. The selected stage flashes. Using $\boldsymbol{\Delta} \boldsymbol{\nabla}$, the following information can be shown.

Current capacitor size

The reactive power value refers to the nominal voltage

Capacitor size in percent

Current reactive power to nominal reactive power ratio

Amount of switching cycles

Amount of completed switching operations

Stage type

AUTO: Stage is controlled automatically
FON: Stage is always on
FOFF: Stage is always off
Flty: Stage has been detected as faulty

Operating hours

Amount of operating hours

MANUAL - Switching stage outputs manually

In order to enter the MANUAL menu, the \rightarrow key must be pushed for 3 seconds.

> $\mathbf{\Delta \nabla}$ to select a stage. The selected stage is shown in the lower part of the display. A stage is switched on or off by pushing the button.

> The MANUAL menu can be exit by pushing the 4 key.

Important information:

- Only stages of the type AUTO can be manually switched.
- The discharge time is considerd in manual mode as well. After switching a stage off, it is locked until the discharge time has been expired.
- The measured voltage must be within the set tolerance. If the voltage is out of tolerance, every stage is switched off and cannot be switched on again.
- As soon as the MANUAL menu is left, the control automatically starts again.

SETUP - Controller setup

The Quick Start menu (100) and the Expert menus (200-800) can be entered by pushing the button. The latter one requires the input of a PIN code.
Un Nominal voltage

Ct Current transformer factor
Pt Voltage transformer factor
Ai Automatic initialization
The phase angle between voltage and current is determined and which stage outputs are used.

PFC Control ON, OFF, Hold

Switching on, off or suspend the control
CP1 Target-cos 1
Compensation target
St Switching time
Delay between switching different stages
Out Stage type AUTO, FON, FOFF, Flty
Stages are controlled automatically, are peramanetly on, permanently off or detected as faulty. AUTO, FON and FOFF can be adjusted and Flty stages can be reset.

Automatic initialization (Ai)

The Automatic initialization determines the phase angle between voltage and current and detects which stage outputs are used.

The Automatic initialization can be activated in the SETUP menu (SETUP/100/Ai or SETUP/207 = YES) and starts as soon as the voltage is within the tolerance and the measured current is greater than 5 mA . The display shows Ai run and the number of the active run. At the end of the Ai, the function of the controller must be checked.

NOTE: The Automatic initialization is only possible in conjunction with capacitive stages.

Due to load fluctuations, it may happens that the Ai does not correctly recognize used stage outputs or is aborted. The latter one is displayed by the error message Ai / Abrt. In this case, the control is stopped.

If the Automatic initialization is not successful after several attempts, the correct phase correction angle must be set manually (SETUP/206). Moreover, the stage types must be adjusted manually (SETUP/100/Out or SETUP/403) and the control must be started again (SETUP/100/PFC or SETUP/310 = ON).

Automatic stage size detection

If stage detection is activated (SETUP/308 = YES), the CX plus determines the size of the stages automatically during each switching operation. The detected sizes are stored in the stage database. There, a stage power loss can be monitored.

If the controller cannot detect a power grid reaction during the first three switching operations, the stage type of the affected stage is set to FOFF and it is not taken into account by the control.

NOTE: The automatic stage detection is only possible in conjunction with capacitive stages. The use of inductive stages requires a manual input of the stage sizes (SETUP/402).

Detect faulty stages

Stages whose size has already been adopted are classified as faulty by the control system after three successive switching operations without a power grid reaction. A new check is performed after 24 hours.

Faulty stages have the stage type Flty and are indicated by a flashing stage symbol.

The cause of a faulty stage could possibly be a defective fuse, a defective power contactor, a defective thyristor switch or a defective capacitor stage.

Most important Alarm and Error messages

U	ALARM	The measured voltage is out of the set tolerance.
I Lo	ALARM	The measured current is smaller than 5 mA .
I hi	ALARM	The measured current is higher than 6 A .
PFC	ALARM	The compensation target cannot be reached.
HArU	ALARM	The set THD voltage threshold has been exceeded.
HArl	ALARM	The set THD current threshold has been exceeded.
StEP/FltY	ALARM	At least one stage is faulty.
SPL/Nr	ALARM	The reactive power of at least one stage has fallen below 75% of the initial power value.
thi	ALARM	The second temperature threshold has been exceeded.
OPh	ALARM	The set operating hours of the controller have been exceeded.
OPC/Nr	ALARM	The maximum switching cycles threshold of at least one stage has been exceeded.
$\mathrm{OPh} / \mathrm{Nr}$	ALARM	The set operating hours of at least one stage have been exceeded.
Ai/Abrt	ALARM	The Automatic initialization has been aborted due to an error. The control is switched off.

Factory settings

SETUP/100 Quick Start	open
Un/ Nominal voltage	400 V
Ct/ Current transformer factor	1
Pt/Voltage transformer factor	1
Ai/ Start Ai	NO
PFC/ Control	ON
CP1/ Target-cos 1	1
St/ Switching time	10 s
Out/ Stage type	AUTO
SETUP/200 Measurement	locked
201/ Nominal voltage	400 V
202/ Current transformer factor	1
203/ Voltage transformer factor	1
204/ Voltage tolerance	10%
205/ Meas. connection	$\mathrm{U}-\mathrm{LN}$
206/ Phase correction angle	0
207/ Start Ai	NO
208/ Sync. frequency	AUTO
209/ Temperature offset	$0{ }^{\circ} \mathrm{C}$
SETUP/300 Control	locked
301/ Control sensitivity	60%
302/ Target-cos 1	1.00
303/ Target-cos 2	0.95 i

304/ Target-cos 2 if P export NO
305/ Switching time 10 s
306/ Sw. time stage exchange 2 s
307/ Stage exchange YES
308/ Stage detection YES
309/ Block faulty stages YES
310/ Control ON
311/ Control algorithm 1
312/ Reactive power offset 0 var
313/ Asymmetry factor 1
314/ Switch off if Q is cap NO
315/ Distribute sw. operations NO
316/ Detect faulty stages YES
SETUP/400 Stage database locked
401/ Discharge time 75 s
402/ Nominal stage size c 3 var403/ Stage type
404/ Switch operat. counterAUTO
405/ Operat. hours counter 0 h
406/ Fan relay as stage output NO

SETUP/500 Alarm
501/ Reset alarms manually
502/ THD-U threshold
503/ Switch off stages
504/ THD alarm delay
505/ Stop control if I=0
506/ Service alarm
507/ Max. OPc stages
508/ Max. OPh controller
509/ Max. OPh stages
510/ THD-I threshold
511/ Digital input logic
512/ TEMP1 threshold
513/ TEMP2 threshold
514/ Control alarm
515/ Faulty stages alarm
516/ Stage power loss alarm
517/ Flashing display
518/ Digital input function
519/ I-Low alarm suppr.
520/ Switch off active stages if digital input alarm
521/ I-Low alarm
522/ I-High alarm delay
523/ Switch-off interval
locked NO
20 \%
NO
60 s
NO
NO
500 k
65.5 kh
65.5 kh

50 \%
YES
$30^{\circ} \mathrm{C}$
$55^{\circ} \mathrm{C}$
NO
NO
NO
NO
CP2
YES/NO NO

YES
10 s
60 s

SETUP/600 Reset menu
601/ Factory reset
602/ Stage database
603/ Operating hours
604/ Average power factor
605/ Max. temperature
606/ Alarm memory
607/ Info firmware
608/ Change password
609/ Restart First Setup
SETUP/700 Modbus
Baud rate
19.2 k

Parity and stop bits EVEN
Slave address

SETUP/800 System
801/ Backlight during Commissioning mode
802/ Backlight delay time
0.25 h

Specifications

Voltage measurement / supply:	Connection: Single phase Range: $90-550 \mathrm{~V} \mathrm{AC}, 45-65 \mathrm{~Hz}$ Protection: Max. 6 A Power consumption: 6 VA Transformer factor: Adjustable 1.0 ... 350.0
Current measurement:	Connection: Single phase Range: 5 mA - 5 A Transformer factor: Adjustable 1 ... 9600
Stage outputs: Option -xxR	6 or 12 Stage ouputs Type: Relay, normally-open, potential-free Supply: Common, max. 10 A $\begin{array}{ll}\text { Swit. capacity per relay: } & 250 \mathrm{~V} \mathrm{AC} / 5 \mathrm{~A} \\ & 400 \mathrm{~V} \mathrm{AC} / 1 \mathrm{~A} \\ & 48 \mathrm{~V} \mathrm{DC} \mathrm{/} \mathrm{1} \mathrm{A} \\ & 110 \mathrm{~V} \mathrm{DC} \mathrm{/} 0.2 \mathrm{~A}\end{array}$ Type: Transistor, normally-open, open collector output Supply: Common, max. 1,2 A Switching capacity per transistor: $100 \mathrm{~mA} /$ $8-48 \mathrm{~V} \text { DC }$
Temperature measurement:	NTC: Under the housing cover Accuracy: $+5^{\circ} \mathrm{C}$

Alarm output:	
Default	Type: Relay, normally-open, potential-free Switching capacity: 5 A / 250 V AC
Option -nc	Type: Relay, normally-closed, potential-free Switching capacity: 5 A / 250 V AC
Fan output:	Type: Relay, normally-open, potential-free Switching capacity: $\begin{aligned} & 250 \mathrm{VAC} / 5 \mathrm{~A} \\ & 400 \mathrm{~V} \mathrm{AC} / 1 \mathrm{~A} \\ & 48 \mathrm{VDC} / 1 \mathrm{~A} \\ & 110 \mathrm{~V} \mathrm{DC} / 0.2 \mathrm{~A} \end{aligned}$
Digital input:	Logic: Adjustable, High- or low-active Input signal: 90-250 V AC
Service Interface:	For service purpose only
Modbus:	
Default	Unassembled
Option -MB	Protocol: Modbus-RTU Interface: RS485 Common-mode range: -7-12 V Differential-mode range: -12-12 V Output current: -60-60 mA
Ambient temperature:	Operating: $-20^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ Storing: $-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$

Humitdity:	Range: 0 \% - 95 \% Condensation: Not allowed
Overvoltage category:	300 VLN 519 VLI CAT III $519 \mathrm{~V}-550 \mathrm{~V}$ Degree of contamination \rightarrow CAT II
Standards:	IEC 61010-1, IEC 61000 6-2, IEC 61000 6-4: Level B, IEC 61326-1, UL 61010
Compliance and Listing:	CE, c NRTL us (c UL us), EAC
Connections:	Type: Screw terminals, pluggable Cross section: Max. 4 mm
Housing:	Front: Plastic housing (UL94 V-0) Back: Metal cover
Protection class:	Front: IP41 Back: IP20
Weight:	Approx. 0,6 kg
Dimensions:	Device: H x B x T: 144 x 144 x 58 mm Cut-out: H x B: 138 (+0,5) x 138 (+0,5) mm

Notes

